Linear Time Algorithms for Clustering Problems in Any Dimensions
نویسندگان
چکیده
We generalize the k-means algorithm presented by the authors [14] and show that the resulting algorithm can solve a larger class of clustering problems that satisfy certain properties (existence of a random sampling procedure and tightness). We prove these properties for the k-median and the discrete k-means clustering problems, resulting in O(2 O(1) dn) time (1 + ε)-approximation algorithms for these problems. These are the first algorithms for these problems linear in the size of the input (nd for n points in d dimensions), independent of dimensions in the exponent, assuming k and ε to be fixed. A key ingredient of the k-median result is a (1 + ε)-approximation algorithm for the 1-median problem which has running time O(2 O(1) d). The previous best known algorithm for this problem had linear running time.
منابع مشابه
Algorithms for Segmenting Time Series
As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...
متن کاملLinear-Time Approximation Schemes for Clustering Problems
We present a general approach for designing approximation algorithms for a fundamental class of geometric clustering problems in arbitrary dimensions. More specifically, our approach leads to simple randomized algorithms for the k-means, k-median and discrete k-means problems that yield (1 + ε) approximations with probability ≥ 1/2 and running times of O(2(k/ε)O(1)dn). These are the first algor...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کامل